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ABSTRACT

lAn algorithm is proposed for solving one-dimensional free boundary

problems with change of phase. The technique consists of solving the heat

equation in progressively increasing rectangles whose size is controlled by

the Stef an condition. Convergence of the scheme is shown and an estimate of

the rate of convergence is given.
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SIGNIFICANCE AND XPLANATION

Stefan type problems arise as descriptions of phenomena such as melting

of metals, solidification of alloys, crystal growth, permafrost behavior. Of

particular importance in such problems is the shape and evolution of the free

boundary or interface.

This paper suggests a method of constructing the free boundary by solving

the heat equation in a sequence of increasing rectangles. The interface is

then approximated by piecewise vertical segments.

The simple geometry, and boundary conditions suggested, can be used to

perform efficient numerical calculations.
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AN ALGORITHM FOR THE ONE-PHASE STEFAN PROBLEM

E. Dinenedetto
( I) and R. Spigler(

2 )

1. Introduction:

Consider the following one-phase one-dimensional Stefan problem

Lu u xx - ut = 0 in DT 0- { < x < 8(t)) x (0,T]

u(x,O) h(x), 0 < x • s(O) = b, (b > 0)

(SP) ux(O,t) = g(u(0,t),t), 0 < t < T

u(s(t),t) = 0, 0 < t ' T

Ux(s(t),t) -;-(t), 0 < t •T

where x + h(x), (9,t) + g(g,t) are given functions on (0,b) and R x (0,T]

respectively.

Under suitable assumptions on h(l) and g, (SP) admits a unique classical

solution. For such results we refer to the survey article [13] and other papers given

in the extensive bibliography.

The aim of this paper is to propose an algorithm to onstruct the solution, which

consists in solving the heat equation in progressively increasing rectangles, whose

size is controlled by the Stefan condition u x(s(t),t) - -;(t).
'Co

Such an algorithm arises as a natural modification of Huher's method [15,10,1]

and can be described in a simple fashion as follows.

First the interval [0,T] is divided in n intervals of length 8 - T/n, then

for t e (0,8) we set se(t) - b and solve the problem

(1 )Indiana University, A1no.mington, IN 474nS.

(2)Istituto di Matematica Applicata, Universit; di Padova, Italy.

Sponsored by the United States Army under Contract No. DAG29-80-C-0041.



Ix '- U . 0 in R ( (0 x < b) (0,e

ulx(0et) - g(ul(0,t)et), 0 < t 4 8

(P1 ) ul(x,0) - h(x), 0 < x ( b

ul (bt) - 0, 0 < t < 6

We compute the number uI(se( ) - b,O) and determine the rectangle
X

R2 - (0 < x < x2 - b - u I(b,e)e} x (0,26]

setting s0(t) - x2 for t e (e,20]. In R2  we solve a problem similar to (P1), and

proceed in this fashion.

The convergence of schemes where at each time step the free boundary is

approximated by a vertical segment was conjectured by Datzeff (5,6].

A proof of convergence has been given by Fasano-Primicerio-Fontanella (11].

-* Their scheme however is somewhat more complicated than the one we propose here, both

in the construction of the sequence of rectangles and in the boundary conditions on

xjP(j - 1)e < t 4 J6 which are not homogeneous, being given as a relationship linking

the distance t - (j - 1)0 with the values uJxl(xj_1 ,(j - 1)6).

Thus the scheme we have described has a two-fold simplicityz the rectangular

geometry and the homogeneity of the boundary data on the approximating free boundary.

We treat the problem for boundary data on x - 0 of variational type since such

a condition is the "natural" one, as pointed out and discussed in [7] The method

could handle the nirichlet boundary data as well.

We give an estimate of the speed of convergence which turns out to be of the

order of 07.
As a related wor) we mention the methods of 114] based on enthalpy

considerations, which yield a slightly poorer rate of convergence, of the order of

-1n 8" 1] 1/2

The methods of proof are simple in that we exploit both the rectangular geometry

and the homogeneity of the data to represent the approximating solutions by means of

elementary heat potentials.

-2-
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Section 2 contains the precise description of the algorithm, assumptions and

statement of results. In Sections 3 and 4 we produce basic estimates and prove the

convergence of the approximating solution, to the solution of (SP).

The error estimate is given in Section 5. We conclude the paper by discussing

some variants of the scheme.

i-3
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2. Assumptions and statement of results

*, Throughout the paper we will make the following assumptions on the data.

(A,) x * h(x) is a positive Lipschitz continuous function on 1O,b), with

Lipschitz constant H, and h(b) -0.

[A2 1  (E,t) * g(c,t) is non-positive on 2 x (0,T], continuous with respect to

t e (0,T), Lipschitz continuous in C, uniformly in t, with Lipschitz

constant G1  and g(h(O),0) = h'(0). Moreover there exists a non-neqative

4constant G2 such that

l qlE,t)l IC G 1 19 + G2 P (c,t) e it x (0,T!

For n o 1,2, ... , set 6 - T/n and consider the sequence of problems Pie

j - 1,2 ... n, defined by

LuJ - 0 in R {0 ( x < x ( - 1)e < t 4 Je}

(P1  u ( - )- 10e, 0 < x x- 1

PrJ ) 1 0 x J 1  ( x 4 x ij

Ux4(0,t) - q(uj(0,t),t), (J - 1)e < t 4 J8

uJ(xj,t) = 0, (J - 1)6 < t 4 JS

where the sequence {x n1  is recursively defined by
j Jul

X 0 b x1 - uj-l(x,.i,(j - 1)8).B, 3 -2,3....n

and

01
u0(x,0) Ul(x,0) - h(x) in (0,bl

By virtue of [All - [A2 ] each (P 1 ) admits recursively a unique classical

solution ul whose derivative Uxj exists up to the lateral boundaries of R.

IIC(o,i.-".jently the seqaence Ix J) is well defined.

Settinq

se(0= bi se(t) - xj for (J - 1)0 < t 4 JO, J = 1,2,...,n

we obtain a right-continuous, piecewise constant function defined in (0,T. By

elementary *,nsiderations and the maximum principle (7,81 uJ(x,t) ) 0 and the

-4-
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numbers uj x ,j8) are non-positive so that xj+j xj and sg(*) isx"an

non-decreasing.

On the domain

n
D5 U Ri

we define the function (x,t) + u(x,t), (x,t) e D , by setting

U(x,t) - ui(x,t), (x,t) e Rj, j = 1,2,...,n

We will think of u(*,) the solution of (SP) and u8 asa defined in the whole half

strip S - (O,w) x (O,T], by setting them to be equal to zero outside oT  and V

respectively. We will use this device for the various functions appearing in what

follows without specific mention.

For bounded functions (x,t) + w(x,t), t + f(t) defined in S and (O,t]

respectively we set

IlI s - sup Iw(x,t)I(x,t)es

Iflt . sup If(T)l

4 t t

We can now state our main result.

Theorems As 0 * 0, u (x,t) + u(x,t) uniformly in S and s8 (t) + s(t) uniformly in

10,T]. Moreover there exists a constant C depending upon H, b, G1 , G2, T such that

lu -ul s  C

SIs a C/1

t . Remarks (i) In view of the stability of (SP) (see [2,3]) the Lipschitz condition in

[A] can be replAced by

(A1 ]' x * h(x) is essentially bounded in [0,b].

(ii) The signum o'nditlnvn on g in (A2 ] can be dropped, provided we assume

q(Ot) - 0, t e (0,T]. In thiq case we set G2 - n Ln the growth condition for g.

-5-
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3. Some basic estimatess

= ~~Let1r x )2

r~x~,~,) _______exp N ( -1

2ri.t T 4(t - T)

be the fundamental solution of the heat equation and let G(X,t;FE,T), N(X,t;E,T) be

the Green's and Weumann's functions respectively, defined by

G(x,tC,T) - r(x,tlg,T) - rC-x,tt,T)

N(x,tgt,T) - r(x,t,T) + r(-x,tit,T)

In the jh rectangle R the solution u1  Of (P) can be Implicitly represented as

(3.1) u1 (x~t) f N~x,t,(J - l)6)u (E,(j - 1)6)d4
0

t
-f NCX,t;0,T)g~u (O,T),T)dT +

+ f t N(x,t;x ,T)u 1 Cx.,r)dT

* -~ (J-1)8 j x

for Cx,t) e Rj. Taking the derivative with respect to x in (3.1) and letting

x'+xi we obtain

(3.2) d uX Ax*) f (X 1 ,tlc,Ci - 1)0)U1 ,c - ))d
2 xj x to ))d

t
- f )6N(x.t0,T)q(U

1 (O,T),T)dT +

(J-1)

The calculations leading to (3.1)-(3.2) are routine and we refer to [4,9,121 for

details.



Let us fix I < j 4 n and (x,t) e R and integrate the rreen identity

R (NU UN NO~ . f'" )

over Rk, 1 ( k < j. ince in Rk  we are away from the singularity we obtain

k ) k x k 8 u k t(3.3) f N(xt1C.k8uk(O.k6)dt - f N(xtt,(k - 1)S)u ( .(k - 1)0)d&
0 0

k6 _ I N(x,tO,T)g(u (0,T),T)dT + f N(x,t x ,T)uk (x ,T)dT
(k-1)8 (k-1)e k

for Ic- 1,2,...,(J - 1).

By virtue of our definition of (Ps), the second integral on the left hand aid. )F

(3.3) can be rewritten as

'k.I
- f N(x,t;C,(k- 1)e)ukl(C,(k- 1)e)dCI 0

Consequently adding the identities (3.3) for k - 1,2,...,(j - 1) with (3.1) and

recalling the definition of ue(x,t) we nbtain

b t
(3.4) U (x,t) f N(x,t;C,0)h(E)dt - f N(X,tO,T)g(uO(O,T),T)d

T7 0 0

J-1 k( 
k

k-1 (k-1i6

t+f 4~~l ~ ~jTd
(j-1)8 xt

Lemma 3.1: Por each 8 the following estimates are valid

2G IT 2G rT
I5/

(a) lue(O,)T r [ w + -- O _=-C0

(b? fuel 'C 0

-7-
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Proof: By virtue of the maximum principle u8 • 0 in V and u4_(xj,t) O

t e ((j - 1)O,je], therefore dropping the non-positive terms on the right hand side

of (3.4) and letting x + 0 we obtain

0 4 u0(0,t) fb 2r(0,t;9,0)h(9)dE - L t g(Ua(Or),T) dT
0 rX0 /t-T

b G1 ft ue(O,T 2
C• f If exp[- 2

/4t]d + 0 dT + - T
rt0 /t r,0 At - -

Statement (a) is now a consequence of standard calculations and Gronwall's

inequality.

Statement (b) follows from the maximum principle applied recursively to (Pj)I

Le na 3.2: For each j - 1,2,...,n

(a) Iu;(xilt) l iteT + e'e C1 , - T//-b2

(b) I Ue (x,t)l C c1 , (x,t) e V

where G - GIC 0 + G 2 , and ; - max(HrG.

Proof: we employ an induction argument by making use of formulae (3.2). First we

prove that if for some j - 1,2,...,(n - I) we have

Iux(X,j)l C P, 0 < x < xj
for some positive constant P, then

:',J 4 6// wb 2 + e  '2 ,

(3.5) I4%1 (xj+,t)I e Pe/ + 8- .. /v'b2  t e (je,(j + 1)61
'-b

where

max Ig(u 8 (0,t),t)f I G C0 + G2  G
(0,T]

Consider (3.2) written for the integer j + I

(3.6) 1 u J+l(x, t) - I1 + I2 + 32 x 1+I 1 2 3

and estimate the integrals II , i - 1,2,3 separately as follows.

-- B

=-4 • .,:C



liII - i G(xj+1 ,t;C,J 6)u J+ ( ,jl))dQI by definition of (P)
0

=if jG(x.+1 ,t;C,J 6)u-'(C,J6)dCI 4 P f IG(X ,tiE,j91jd4

0 x0 J1

L- 2 - d

2

To estimate 121 1 3 we recall the following elementary estimates onN

IN xxJ+1 #t/b) 42( j+1 b>0

NXx j+11 ; J+0Ti1 2b

Therefore

2 G2(t - JO) ( 4G -

32 2 wb2b 2

Putting together these estimates as parts of (3.6) we have

Iu 1(xj+1,t)1 4 P + BI -1 + I j l j~i 1 (x +,T)jdt
rPb 2  / b 2 je x i

for all t e (je,(j + 1)0].

Consequently by Gronwall's inequality (3.5) follows at once.

Consider now the problem (Pa j =1. since x + h(x) is LipSChitZ continuous

in (0,b), h'(x) exists for a.e. x e (O,b] and

ese sup Ih'(x)I 4 H 4 max IH,G}

Therefore by the pre.Iloiv argument

-9-



I(21,t)I ( le *8a*, t e (0,6]

where for simplicity of notation we have not a - 8/b 2 . The function

(x,t) * ~4(X,t) 3 v(x,t), will satisfy the Dirichlet problem

W -0 in ft1

v(0,t) - q(u 8 (0,t0,t), 19(u a(0,0),0) 4 G, toe (o,81

Iv(x1,t)I 4 We + SGOe * tO0 (0,81

v(x,0) - h'(x), Ih'(x)I H &ae. x e (0,bJ

consequently by the maximum principle

Iu xef .0 He C + Man*

and by (3.5)

lu2(x 2et), ;0f2 0 + M0G2s + SMaea

Proceeding in this fashion we obtain

';xi ~ He81 G(jQ)e

Now ja 2 JO -C, and therefore the lemma is proved. Next we introduce the

function t *s,(t) deftned by

(3.7) 6 (t) - xi - 11 Cx ,jS)(t - (j - 1)0), t e ((j -),6
xj

For t - JO, 06 t - xj+1u in(0) b, ()so that the graph of e8* is obtained by

connecting the points (b,0),(zc 0,8 ... ,(x ,(n - 1)0) for t e (0,(n - 1)8], and by
2 *n

J-.the graph of (3.7) for to e n - 1)19,T]. The points (xj,(j - 1)0), j -120..n

are the lower vertices at the right side of the Ries.

By Lemma 3.2

b 4 se(t) 4 b + CIT, t e [0,T]

therefore the sequence G{ (*)) Is equibounded and equilipuchitz, so that by hscoli-

Arzela theorem a subsequence relabeled with 8, converges uniformly to some non-

decreasinq, Lipschitz continuous curve t + s*(t), with Lipschitz constant bounded

by C1 . Since Is 0 (T C 18, also 8 (t) o.,tir.res onrif.rmly to S*(t).



Let Do* be the donain defined by

D.. -S (0 < x < a* tM) x (0,T)

and let u* be the unique solution of

Lu* - 0 in DO

u(Ot) - g(u*(O,t),t), t e (O,T] ,

u*(x,0) = h(x), x e (0,b] ,

u*(s(t),t) = 0, t e (0,T]

we will show that u,(x,t) + u*(x,t) uniformly in S and that the pair Cu*,s*) so

obtained is actually the unique solution of (SP) in the introduction.

We remark that as a consequence, in view of the uniqueness for (SP), the

selection of subsequences is superfluous.

The following lemma will be needed.

Lemma 3.3: Let (x,t) + v(x,t) be the unique solution of

Lv - 0 in Ds* ,

Vx(O,t) = g(u8 (O,t),t), t e (O,T] ,

v(x,0) - h(x), x e (0,b] ,

V(S*(t),t) - O, t e (0,T)

Then

0 4 v(xt) 4 C1 (*(t) - x), (x,t) e Da*

Proof: The lama is proved by standard barrier techniques and the maximum principle

(101.

-11-



4o Convergence of the scheme:

Lemma 4.1: u 0(x,t) + u*(x,t) uzniformly in 8, as 8 0.

-Prooft By the triangle inequality

lUe - 11eI..s 4 Svi I.. + 12 No,

where wv1 (x~t) - ue(x,t) - v(x~t) and v2Cxlt) - V(xlt) - U*(x,t), and v is

defined in Lemma 3.3.

set

Q(t) * in~s,(t),sg(t)), O(t) - aax(s,(t),sC(t))

6(t) - 0(t) - Q(t), t e (0,T]

We already know that d(t) * 0 uniformly in 10,T), as 8 + 0.

Consider the rectangle R,, I n. We claim that if

1w(x,(J - 1)8)1 4 C1 I Is (J-1)8, xe0 (0,4), then

1(x,t)l 4 C 11 FI~ (x,t) e (0,,) x ((j - 1io,jei

If for t e toi - 1)e,jel, x s*(t) then w, solves the problem

Lw1 - 0 in {0 < x < x} X ((j - 1)S,jO]

v1 (0,t) - 0, t e MC - )jO ,
x

lw1(x,(i - 1)8)1 4 C 1 181 (-), xe(~~

W -x~t -v(xj 1 t)V t e ((j - 1)O,JOI

Hence 1v(x,t)l 4 max(c I SE )e max v(x,t)), (xt) e R s y toe=&a 3.3 we

ohtain

1w1'c~lC 11,t (x,t) e to,m) x [Ci - 1)e,joi

If for t e [(j - 1)G,JIe, x se(t), then w, solves the prnblent

Lw 1  0 in (0 < x < s*(t)) x C(j -i)j]
W1~0,1t) -0, t e C(j - i)e,jel

1v1 (x,(j - 1)0)I 1  151 (J-1)8' 0 < x Ic sa10 - 1)6]

w 1 C*(t),t) =u 8C(S*(t),t), t e (Ci - i)e,jei

By Lemm 3.2 ve have 0 4 u 8 (x,t) 4 C (x, - x), Cx,t) e S and therefore

1v(x,t)l Cc C11, (x,t) e Co,") x (Cji )O,jG]

-12-



if t* e ((j - i)e,je) such that xj - s(t*), then we repeat analogous arguments

in the domains so determined.

Now since for t - o, wl(xoo) - 0. xe (0,a), an inductive argument gives

1w1(x,t)I 4C C1 1 *
5*a xe C0,, t e (0,T]

As for w2 , since it solves the problem

=W -0 in *

w =(~t g(ue(O~t),t) - g(u*C,t),t)

v 2 (x,0) - 0, x e (0,b]

v2 (8*Ct),t) - 0, t e (0,T]

it can be dominated [2,3] by the function

t
S2 (x,t) =f N(X,t;,T)Ig(u (0),T),T) -g(U*(0,T),T)IdT

0

r.- the unique solution of

LwO- in S

w2 x(0,t) - -Ig(uO(O't),t) - (u*(O't),t)I, t e (0,T]

w2 =,O 0, x e (o0,)

Hence

t

'4 w2(xlt)I 'C G f N(x,tl,,)Iue(0,T) -u*(O,r)jdr

We deduce that

lu6,(x,t) -u*(x,t)l I w1(x,t) + G tf uCOr - 0, dT
0 t -

BLI j u ue(x,T) -(,~

SC1 +S .. i ft xeLL-i) ____dT

-13-



And by Oronvall's inequality

*(4.1) sup Iu0Cx,t) -U(X~t)t 4 C 161 e~ / C lag
x@(.~)I t2 t

for all t e [0,T] . The lemma is proved.

Lea4.2. The pair (u*,s*) coincides with the unique solution of (SP').

Proof: The only thing that remains to be proved is the Stefan condition

uC.(t).t) - -;(t), t e (0,T). *such a condition has been shown to be equivalent to the

integral identity (2, page 85]

(4.2) 8(t) - b - f5 g(u(0,rf),t)dTr + f h(x)dx - f It u(x,t)dx
0 0 0

and hence it will be sufficient to prove that a*, u*, satisfy (4.2).

Integrating the equation Lu1 - 0 over Ri we obtain

isi

f Ie uiCx ,,r)dT f - 5 g(u 1 C0,r),T)dT +

(4.3) x

I K

+ f ui(x,(j - ))dx - f u(xJ)dx
*0 0

Also for (Th t) e R 1 n p n, integrate Luo v 0 over the rectangle

(0 < x < x ((p - 1)0,t. It gives
p

t t elI

(4.4t) - I up(x ,?)dT - - I, (u( ,T),T)dT + x u(x,(p 1)8)dx
-P00 0 0

I

- f PUP'(x,t)dx
0

By the definition of (P we have

'~~~ 14x1 x

I + ux, -1 xJ) dx - 5 uuxxje)dx
0 0

-14-Sx



MKI

therefore adding the identities (4.3) for , l,2,...,p - I and (4.4) we obtain

(.5) fie ,J(x ,T)dT - ft  ,upN T)dT-
*~~ i- jtj (p-I)e

x
t b p

= - I g(u,(OT),?)dT + f h(x)dc - f uP(x,t)dx
0 0 0

We rewrite the left hand side of (4.5) as follows:

- - (-) I pI I1 ( ) is u J(xi#T)dT - f f u(x ,?)dT - - 1 fi ulx jS)dr

-

f upx,,e~dT- p' f e 0(1)dT - f ep('r)d-T
(p-lie :J-1 (J-1) (p-i)e

where

ee(t) - u ( ,t)- u I(X ,i8), (i - 1)6 < t ( is I -1,2...n
x if xi

We observe that the numbers -uj(x Vie) are the slopes of the Lipschitz
xi

continuous polygonal t + So(t) for (j - 1)8 < t ( JO, consequently

" - : ui(xVJe)dr - f t x x,pe)dr f a (T)dT b
j=i C-1)8 (p-I)e p 0

Carrying this in (4.5) gives

- t bx
(4.6) rn(t) = b - f g(u 8 (0,T),T)dT + f h(x)dx - f ue(xt)dx +

0 0 0

+p-1 is (~d t

+~ , _1) e 8 (ed f ),eP(T)dT
0- j-) (p-i)

By virtue of Lemma 4.1 and the uniform convergence se(t) s*(t), letting

9 * 0 in (4.6) gives

-- 15
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(4) (t) -b - f g(iua(O,?),?)dT + f h~x)dx -I u*(x,t)dxc +
0 0 0

+ lim ( I ej(T)dr f~ e(T)dT1
60 iI(1-1)6 (P.-I)O

Therefore the leaa will be proved if we show that the limit in (4.7) is zero.

In order to estimate the si(l) we will need a representation for uJ(x t),x j

t e (j-18j]

Consider identity (3.3). B y taking the derivative with respect to x and

integrating by parts the first two integrals (the identity NE.a -0 is uised) we

obtain

xk 21k

(4.8) f G(x,tlC.kO)u k (,kO)dg - f G(X,tr&,(kc - IM8U k (E,(k - )8)dt
0 x0

ke k8
f N (x,tjO ,r)g(uO(OA),T)dT + f Ni CXt k(,Td

Now by the oonstruction of u the second integral in (4.8) can be rewritten as

21k-1
-f Gcx,tr,(ci - 1)0)u x '(&,k - 1)0)dg
0 2

therefore adding the identities in (4.8) for k il2 , .... ,(j -1), changing the sign

and evaluating the sum at x - 2j, gives

b J1
(4.9) fG(x ,tj,,)h'(&)d9 - f G(x,trt,(i IMGU 1 J 1 (C,(j 1)e)dt

0 0

-f(J-108
0 Nx x~t1,T)g(U 9(0,T),r)dT-

J-1 kO

kI f N)6 X jo k'rOu (xk T)dy

k I (k16-

4"



Consider nov the representation (3.2). B y the way iii has been onstructed, the

firat Integral on the right hand side of (3.2) reads

Ix - G(xitt,(i - 1)0)u J 1 (9,(j -1)0)dt

Finally adding (3.2) and (4.9) gives

(4I0 x ,t) f G(X1.ti4,0)h'(C)d9 f Nt (X(0tT +
(410 ux xi 00 x jtO,T)g(u9(,)Td

+ J1 f k8 N(X. kJ~TI (Xk,T)dT +

t
+ f N(x Ot tX gT)Ui(x,#T)dr, t e ((j - i)e,j6]

(J-1)8 x j X

The error terms e 0 (t) j -
2
,3,...,(p -1), can now be written an

se (t) -- cu~jt ui xfej I b bGXftc - G(x1 1i6j,OIjh'(C~dc

00

t

+ f x ENOI,~( atjx,T),Tc +

t

-1 (Nxe kT)N

(J-1)0 ~ 1 i1 1 T] x 1 rd-

-f ti (x1 ,jOIX T)Uj(x T)dT

t x

- + 12+ J2' 3 3 + 34 + 4

-17-



By the mean value theorem and standard estimates on the exponential function we have

IG(xj1 tlC,O) - G(xe,c,o)j 
< 

(K1 + K-) 4 K1 0 + X 2 (j - 1)3/281/2

Here and in what follows Ka denote constants independent of j * Consequently

1311 4 Hb(11 8 + K2 ( - 1)-3/281/2)

As for J2 analogous arguments yield the estimate

INx(x ,tjOT) - N (x ,*ejO,T) K ,

where we have used the fact that xi • b > 0. Therefore J2 can be estimated by

J321 4 GK 3T 

Let us now turn to 33. Pirst we note that for k - 1,2,...,(j - 2),

INx(x,txk,T) - Nx(x1 ,iexk,T)l c (j8 - t) sup IN xt(x ,jPIX kT)l '

-;(xi - 2k
x8 " 'k " 4(P- T)

4 N4 + K15 8 sup T)5/2
-":tCP<iS (p -

How since (xk'k0), (x1 ,(i - 1)8) belong to the maximal extension of the graph

(t,s 8 (t)), we have (x - xk ) 2(P - T) for k - 1,2,...,(j - 2), and hence

J-2 kO k1331 I INx(xltlxkT) -N CxfJsxkr)IIu (xk,T)IdT +
k-1 (k-1)0 x

+ f jN-1 x,t;x _ ) - N ( xj . 1 ,T ) I lu J
1

(x T)IdT

x J-N(x~~1 1u - x 1 x J-1'

(J-2)0

GCK 8 f (J-2)0 d + 2c 2 58 ((-2)0 - 1)e - Tr -3/2dT +
0 0

+ C f INx(xj,tlx J_,1) - Nx .aolx .1)Id!(J-2)8 xX 'ex"

In order to estimate the last integral recall that

-18-
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IN x(xi#P~x ..11r)I 4 K 6 (P - >) -12T

substituting this in the estimate of J33 we obtain after some algebra

1331 'CX

Analogous considerations yield l32.1 + 1341 + IJ41 4 X 8i Therefore the error torus

e8 (t) can be estimated by

le MtI 4 K/ A K1 0 (j - 1)-3/261/2

For the error 20in (4.6) we have

p--I j8 t
13.1 I X I ej(T)IdT + ft Isp(T)Idr

J-1 (J-1)8 p-)

f e( nIdr + I f tej(r)IdT
0 J-2 (J-1)0

NIow trivially Is (T)I 44 2C. Therefore

-)3/2

fi 2C1 6+ K 9/ J-2 10 J-2

Since 1 6 < pO 4 T, and the series (j -1)-/ converges, we obtain
dJ-2 j)02

This proves the leens.
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5. The error estimates

=The purpose of this section is to give an estimate of the speed of convergence of

the approximate interface s,(t) to the true interface e(t). In view of Lemma 4.1

and (4.1) this will also complete the proof of the theorem.

Lema 5.1: There exists a constant C depending upon H, b, G1 , G2 , T such that

Is o - as T 9 C/9

Proof: Subtract (4.6) from (4.2) and use (4.11) to obtain

t

18(t) - ;et)l 4 f Ig(u(O,T),r) - g(ue(0,?),r)Id +
0

+ u( x, t) da - t O8 (x,t)dxl +

0 0

se(t) x
+ el(x,t)dx - j x,tldcl + K ,
0 0 11

where u 8  is the unique solution of the problem

L*e - 0 in D; (0 < x < ;e(t)) x (0,T]

u8 x(O,t) = g(ue(0,t),t), 0 ( t 4 T

ue(xO) = h(x), x• (.,b

ue(se(t),t) - 0, 0 < t (T

On the basis of the maximum principle and standard barriers estimates (10,7], as in

Lemma 3.3, we have

0 4 u(x,t) 4 C (s(t) - x), (x,t) e DT

o ( u(x,t) 4 Cl(; (t) - x), (x,t) e -

Proposition 5.1: There exist constants B1  and B2 depending upon H, b, G1 , G2 1

T, such that

-20-



8(t) ;O~t )  tsup ts(P) - ;~~

If u(x.t)dx - / u(x,t)dxI < B1 __0_ d +
0 0 0

t 181
+ 2 (t T

Proof of togosition 5.1, Set

;(t) - min(s(t),;e(t)l i (t) tx{s(t),;0(t)),

(t)- () -;(t), t e (0,T]

Obviously u(*), () are non-decreasing Lipschitz continuous functions with

Lipschitz constant bounded by C 1 . Then

88t *(t) a(t)

if U(Xt) u,t)d - xl u - 0 (x,t)ldx +
0 0 0

+/<t)
+f ly(xt)idx I I + 12

ait)

where

y(X,t) u(x,t) if a(t) - 6 (t)

U if 0(t) - Bft)

We dominate the inteqoand in I1 by the sum Iv - ael + iu - vi where v is defined

in Letma 3.3 and v1 , v2 are the solutions of the problems

"Lv = 0, (0 1 x < &(t)} x (0 < t ( T)

j VIx[(
0
.t) - 0, 0 < t 4 T ,

v1 (x,0) - 0, 0 < x 4 b ,

V(;(t).t) - C I(t), 0 ( t 4 T

and

Lv 2 - 0, (0,") x (0,T

(F' 2 v2x(0,t) i-q(u(O,t),t) - g(u (0,t),t)l, 0 < t ( T

v2 (x,O) 0, x e [0,,)

-21-



AS for v2 1 it can be represented explicitly (91, by

It
v2(x,t) f (lx,tlOTllglu(OT),T) - g(u C0,T),T)Id •

0

Therefore by virtue of the Lipschitz oontinuity of g(lt) and (4.1) we obtain

v2 (x,t) C t 1 d

By an argument of [. page 87, v, can be dominated by z(x,t) + z(-x,t) where z

solves

fLz -0, [-;(t) ( x - x (0 < t 4 T,

(PZ) z(-a(t),t) - CII(t) , 0 < t 4 T

z(x,O) 0 0, -b 4x <

Then there exists a constant K12 depending only upon the data such that

t
z(x.t) 4 K12 f IITIr x(x,t,-(T),T)IdT

Therefore

f vl(x,t)dx ' f z(x,t)dx f z(x,t)dx IC K 13
0 ~-G(t) t

The estimate of 12 is done by exploiting again the methods of [2] page 87 and

dominating the integrand by z(x,t), the solution of

L; 0, <(t) C x < S} x (0 < t ' T}

(P;) z(x,O) 0 0, b 4 x <

;(aWt,t) C 3l(t), 0 < t 4 T•

It gives

-22-



t 11

12 K f t
2 

14 o 0 A --

Proposition 5.2% There exist a constant ; depending upon H, b, G 1, G2, T such

that

s 6 (t) x
p

if u(x,t)dx - f pu 6(x,t)dxi E
0 0

Proof of Proposition 5.2: For t > 0 fixed we have ie(t) ) x P. Then

Se(t) x x

if Ue(x,t)dx - f u6 (x,t)dxl ' f 1u(xt) - u 8(x,t)ldx +"!0 0 0

;(t)

+ f ;8 (xt)dx - J1 + J2
x
p

Standard barrier arguments [7,8,9] give

sup lu,(x,t) I ( Cl(b + CIT)
(x,t)e-so

On the other hand by the construction of aS(), the distance S6(t) - xP is at most

C 1e. Hence

J2 K15  "

To estimate the integrand in J1 we proceed as in Lemma 4.1. In fact, in the present

situation the estimates are simpler since u. - u has zero flux at the fixed face

x - 0. we obtain the estimate analogous to (4.1)

1 8(xt) - u0 (Xt)4 K 16 0USp 1S6(T) - SO(T).

As remarked above for all t e 10,T] we have

0 (t) - se(t) ( C18

and hence the proposition is proved.

-23-
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we now conclude the proof of Lemma 5.1. Notice that by virtue of the Lipschitz

continuity of g(o,t) and (4.1) we have

IguO.)T -/ t~8 Or,)d ( 1 2 Ju(0,?) - u (0,T)I dT

0 0 /____

G1'2 Cf dT.

Putting together the various estimates so obtained we see that for all 0 < t (T we

have

t 131 t 181T1st (t)I 4 K /~+ K f-- dT + K d
is1 19 0 t-T 17f

0 /t---r0 I'T= T

Now

19(t) (0 ;Pt) 18I(t) - a e(t)I - Is (t) - 8(t)I

and

SUP 18up~ (p) - O 8 up 186(p) - 0(p) la cI

Consequently the above implies

t K20 +K21o f T d-

The proof of the lemna Is concluded with an application of Gronwall'a inequality.
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6. Modifications of the scheme:

Consider the sequence of approximating problem (P ) introduced in Section 2. The

theorem remains true if we modify the flux condition on the fixed face x = 0 in (Pj)

as follows

(6.i) Retarded flux.

We set uI(Ot) = g(h(O),t), 0 < t < 6 and for j > I we replace the flux

condition in (Pj) with

u*(o't) = g(uj ',(ot - ),t), ( - 1)8 < t 4 j4.

(6.ii) Piecewise constant flux.

The modification consists in freezing the flux on x - 0 in the jth rectangle

at its value at the lower left corner.

Set uI(O,t) = g(h(O),O), 0 < t 4 0 and then for j I I

u(O,t) - g(uj'
1

(O,(j - 1)6),(j - 1)6), (j 1)8 < t r jo

The proof of the convergence and the error estimate for the scheme obtained with the

above modifications, is carried out in essentially the same way as indicated in the

previous sections. Some minor modifications are needed which we leave to the reader,

(cf. [11).

I
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